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Applications of non-standard analysis to relativistic 
quantum mechanics: I? 

C E Francis 
Department of Mathematics, Birkbeck College, Malet Street, London WClE7HX, 
England 

Received 22 July 1980, in final form 16 March 1981 

Abstract. Some representations of the Dirac S function are considered including a new 
representation. A new theory of Fourier transforms is developed which is better suited to 
use in physics than the standard theory. The work is of general interest as well as of 
relevance to subsequent articles. We then give a brief outline of the construction of field 
theory from quantum mechanics as facilitated by non-standard analysis and a theorem 
which enables the calculation of a cross section from plane wave states. 

1. Introduction 

Non-standard analysis is now accepted as a powerful method of proof in mathematics, 
and its application to quantum physics has often been suggested in view of the severe 
divergence problems of this subject. Work in this area has already been done by 
Kelemen and Robinson (1972), Faroukh (1975), Blanchard and Tarski (1978) and 
Tarski (1978). The present approach as outlined in § 3 is entirely unrelated to these. 

The foundational work on non-standard analysis is Robinson (1966). Introductory 
accounts can be found in Luxembourg (1973), Voros (1974), and Kelemen and 
Robinson (1972). An excellent full account is given by Davis (1977). Machover and 
Hirschfield (1969) give an account with a clear insight into the construction of 
non-standard analysis. The purpose of the present paper is to develop some mathema- 
tical methods using non-standard analysis with a view to applying them to develop a 
mathematical form of quantum field theory. We describe this briefly in § 3.1. The 
detail is given in subsequent papers. In 9 3.2 we give an example to illustrate the power 
of the new method. 

It may be thought at first sight that the results of § 2 are not really new and the 
mathematical difficulties have just been transferred to non-uniqueness problems. In 
fact for all practical purposes non-uniqueness is not a problem. (Quantum mechanics 
already presents an example of this fact.) Further there is a fundamental new feature in 
that the new theory enables the use of S functions and Fourier analysis on a wider class 
of functions. Physicists work on this wider class anyway as an algorithm which they 
know works from experience. However, such an algorithm cannot lead to any explana- 
tion or deep understanding of physics unless it can be shown to be mathematically valid. 

t This paper will form part of a PhD thesis to be submitted to the University of London. The work was done 
under the supervision of Professor C S Sharma. 
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2540 C E Francis 

For the purpose of understanding the main part of this work an intuitive idea of 
non-standard analysis should be adequate. It is a theory of infinities and infinitesimals 
which behave like the reals as understood by Leibniz and which is suitable for the 
development of the calculus. The outline is as follows. 

Starting with a universe U, consisting of a set S of individuals (e.g. R, C, Z , a Hilbert 
space H )  together with all relations, relations between relations etc, defined on S we 
construct a larger universe W, which has the following properties. 

To every element r of U corresponds an element *r of W, Then *r is called a 
standard element of W. It is usual in this case to suppress the * when no ambiguity will 
arise. For example if r is a function r : S + S ,  say then *r : *S + *S and whenever r (s )  = t 
we have *r(*s)  = *t. Then, since we embed S in *S so that *s = s and *t = t, *r is an 
extension of r .  

There is a universe *U c W, called the non-standard universe. (The definition of a 
universe is technical, and *U # W for an infinite set S ) .  The elements of W will be 
called internal if they are in *U, and external if they are not. In particular every 
standard element is internal. 

We now come to the all important transfer principle: ‘any sentence which is true 
about U may be interpreted as a true sentence about the internal sets *U’. We used this 
above when we wrote r (s )  = t 3 *r(*s) = *t. This sentence is also true when r is a map 
between general elements of U. 

For example the phrase: ‘R is an ordered field’ can be re-interpreted ‘*R is an 
ordered field’, so that we can add and multiply infinite and infinitesimal numbers. But 
the phrase: ‘R contains only finite elements’ must be re-interpreted ‘*R contains only 
* finite elements’. In fact infinite and infinitesimal elements are * finite, and both R and 
the set of finite numbers are external. It was the lack of this distinction which caused the 
trouble in Liebniz’s theory. The elements of *R will be called hyperreal. 

1.1. Analysis 

We work on *R. For the purposes of this article we use standard definitions of integrals 
and derivatives and extend them by the transfer principle to internal functions. The 
integral is the proper Riemann integral. Let x, y E *R. We say that x = y  whenever 
x - y is infinitesimal. If y E R and x = y we write Ox = y and say that y is the standard 
part of x. 

We require the non-standard formulation for the limit of a sequence. Note that a 
sequence s, is a function s : Z + +. R so *s : *Z + + *R and we may write *s = s. Then 
sn + I E ’ iff sn = I for all infinite n E *3+. For example the improper Riemann integral 
exists provided o(j:w dxf(x)) exists and is independent of the infinite positive 
numbers cc., n. 

A standard function is continuous at x E R iff f ( y )  =f(x) whenever y =x. A n  
internal function for which x = y + f ( x )  = f ( y )  is called microcontinuous. 

1.2. Some non-standard theorems 

The first two are somewhat modified versions of the infinitesimal prolongation theorem. 

Proposition 1.2.1. Let f be an internal function f : *R + *R such that V y ,  E R’, y E *R 
and y > y l + f ( y ) = O .  Then 3yoc*IW+, y 0 = 0  such that y >y&f(y )=O.  
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Proposition 1.2.2. Let f be an internal function f : ("R')" + "R where n E Z +. Let 
f = f ( m ,  . . . , m,) = f ( m )  be such that f ( m )  = 0 whenever each mi is finite for i = 
1, . . . , n. Then 3M E "R, infinite such that if mi <M for each i = 1, . . . , n then 
f ( m )  = 0.  

The third is an (apparently) stronger version of the non-standard criterion for the 
limit. 

Proposition 1.2.3. Let f be a standard function f : (R')" + R where n E Z +. Let f = 
f(m 1, . . . , m2) =f(m) be such that 3M such that if for each i = 1, . . . , n m, is infinite and 
m i < M  t hen f (m)=aER.  T h e n f ( m ) = a , V i n f i n i t e m , e * R + i = l ,  . . . ,  n i.e. 

lim f ( m )  = a .  
m, +m 
each i 

The proofs follow by obvious modifications of the ones given by e.g. Davis (1977) 
and are given in the Appendix. 

2. Some basic mathematical results 

2.1. The Riemann-Lebesgue lemma 

For the standard version and proof the reader is referred to any standard work on 
mathematical methods of physics e.g. Olver (1974). The non-standard form which we 
shall use is: If q ( t )  is standard, continuous on the interval [a ,  00) 5 R and j; dtq ( t )  ek' = 0 
for all hyperrealx such that lx 1 >xo E W and for allinfinite positivep, v (this is equivalent 
to uniform convergence of the integral) then for finite a, jr dtq(t) elxr = 0 for infinite 
positive p, /x I. 
Note. Many books require 1; dtq(t) e'"' to  be absolutely convergent, but in fact uniform 
convergence is adequate, so that the Riemann-Lebesgue lemma holds for a wide 
variety of functions such as q ( t )  = 1, q ( t )  = l / t .  However, it is difficult to write down 
conditions on q to ensure uniform convergence without creating an undesirable 
restriction. 

2.2. The non-standard treatment of the Dirac 6 function 

Non-standard treatments of distribution can be found in Robinson (1966) as well as in 
Luxemburg (1962) and Stroyan and Luxemburg (1976). However, we believe that 
once armed with the methods of non-standard analysis a physicist has no need of 
distributions. For any distribution D we can write down any number of representations 
of D which are internal functions. Then we need study only the representation, which is 
considerably simpler than the study of the distribution. We shall suppress the word 
representation. For example for the Dirac 6 function we may write as 

where 0 < v is infinite (2) 
-1 2 

(my)  sinv x forx # O  
forx = O  

where 0 < v is infinite. (3) 
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We use the symbol zT in order to indicate the need for a suitable test space T of 
functions f such that the S function has the required behaviour: 

lab dx (x - Y ) f ( x  1 =f(y 1 fora  < y  <b. 

The test space depends on the choice of 6 function. For (1) we need only f to be 
micro continuous, but for (2) and (3) we also require boundedness conditions as x + 00. 

We require further conditions if we wish to use derivatives of the S function: 

a ' ( ~ )  =T -(2v3'2x/&) e-"" (2a) 

(v/.rrx) cos y2x - ( . r r ~ ~ v ) - ~  sin y2x  ifx f O  
ifx = O  

(2a) is infinitesimal for finite x, (3a) is frequently infinite. This is a new feature of the 8 
function and we need to understand what it means. Consider 

W I  < 0 <F2. 

To obtain the required behaviour we need 
(i) 6 (pjlfb, 1% 0, i = 192, 

(ii) f' is in the test space T for the relevant S function. 
We shall apply the conditions defining T in a fairly ad hoc manner in order to suit the 

particular problems that we shall have, but we observe that there is no need to restrict 
ourselves to the test space of infinite differentiable functions of rapid decay. 

2.3. Fourier transforms 

Just as it is convenient nct to have a unique S function it is also convenient not to have a 
unique Fourier transform. We define, for positive hyperreals p,  v and for the internal 
function f ( x ) ,  *-integrable on any interval 

F ~ f ( t )  =- d x f ( x )  e-"' 

unless otherwise stated p, v will be taken to be infinite. 
If for any infinite p, v, FLf(t) is microcontinuous, near standard and ' ( F f : f ( t ) )  is 

independent of p,  v at t E R we can define F f ( t )  =O(Ff: f ( t ) ) ,  the standard Fourier 
transform. If Ff can be defined on R and Ff:f is microcontinuous on *R then the 
approximation theorem (Davis 1977) states that Ff is continuous on R and that 
Ff( t )  =Ff:f(t) Vt E "52. 

1 "  
J27T -kL 

Proposition 2.3.1. I f f  is standard and J'?m d x l f ( x ) l  exists we can define Ff, continuous 
on [w and Ff( t )  =FLf( t )  Vt E "R. 

Proof. We have only to prove that Ff: f is microcontinuous on "R, i.e. that Vt E *R, 
dt = O  /Ff:f(t +dt)  -Ff : f ( t ) l  = O .  Now if dt = 0, then by the infinitesimal prolongation 
theorem 1.2.2 3M, infinite such that p, v <M + p  dt --U dt = O .  Then Vp,  v <M 

IFf: f ( t+dt)-Ff:f( t ) /C 1' dx If(x)l/e-"d'-.l/. 
-II 
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But 

so F r  f is microcontinuous on *R for p, U <M. Thus Ff is continuous on R and 

for -p = = x s u  . e-" dt = 1 

FfO) = (F! f)O) for t  E *R p, v <M.  

Therefore by 1.2.3 

lim (FE f ( t )  -Ff(t)) = 0 
r+m 

l.L,v-m 

JFf(t) =q f ( t )  for t  E *R, V infinite p, U. 

The non-standard Fourier transform has a much wider application than the standard 
one. For example if f(x) = 1 then 

which is a S function as we shall show. 
We first define a test space as follows. Let T be the set of differentiable standard 

functions R -+ R such that for f E T 1:; dt ekxtf(t)/t = 0 for all hyperreal x with Ix I > x o  E R 
and for all infinite positive and all infinite negative pl, p2.  

Lemma 2.3.2. Let a be finite,f E T. Then 1:; dt e"xtf(t)/(t -a)  = 0 with p 1 ,  p2 as in the 
preceding definition. 

Proof. 

a '2 f (t) =- 77 -a  jw,  dt eki- 
t 

(for some p1 S 77 s p2 by the mean value theorem) 

= 0. 

Theorem 2.3.3. Let f E T. Then 

i 
t 

I = 1-1 dt -(e-"" - eitW>f(t + a )  = 277f(a) 

where p, U are positive infinite, a is finite and -K  < a  < A .  

Remark. We may without loss of generality set a = 0. 

Lemma 2.3.4. Let f be differentiable at 0. Then for infinitesimal 77 > O  
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Proof of lemma. Since f is differentiable at 0 we have from Davis (1977 pp 63-6), for 
infinitesimal t ,  f ( t )  =f (O)  + (f’(0) +a)t where CY is infinitesimal. Then 

j-: dtf(t)i(e-i‘u t +eirp) 

I i 
= SI-: dt {f(0);(e-itv -ei””)+(f’(0)+cu)(e-i‘u -e’”) 

as required. 

Proof of theorem. By the RL lemma b’y E R’ and K ,  A E *R+, y < K ,  A 

i (1; +jyA) dt f (t);(e-”” -e’””) = 0. 

Hence by the infinitesimal prolongation theorem 1.2.1 3qo=0 such that 

thus for infinitesimal 7 >qo 

i I-[-: dtf(t);(e-”” -e”’”) 

-1: dtf(O):(e-’‘” -e’”) 

by 2.3.4. Now for 6 E R’ and r > 0, infinite we have 

dt - (e-iru - eit+ ) LI 0 i: t 
by the RL lemma. So by the infinitesimal prolongation theorem 1.2.1 3e0 = 0 such that 

t>to=$ J dtj(e-”” -eitC”)2:o. 
5 

Then taking 0 2: 7 > max(to, qo) we obtain 

I I-: dt f(0) j (e-”” - e’‘’” ) 

i 
= dtf(O);(e-”” -eir’”) 

-- 1) -(e”’” - l)]. 

There is a removable singularity at r = 0. We draw the contour of figure 1. Then 

i 
dt ;(e”’” - 1). 
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Figure 1. Contour for the evaluation of Figure 2. Contour for the evaluation of 
ST, dt i(eIrc” - l)/f. SI, dt i(e-I‘” - l ) / t .  

Now (as in Jordan’s lemma) 

= 0. 
so 

i 
dt - (eitw - 1) = T.  

Similarly using the contour of figure 2 we obtain 

i r T  dt (e-”” - 1 ) ; ~ ~  

thus I = 2 ~ r f ( O )  as required. 
We therefore have 

(F;  l)( t)  =+ J2,s (t) 
We can now develop a theory of Fourier transforms. This is much more general than 

the standard theory. We proceed by examining some familiar results in the new theory. 
It is not difficult to  generalise T to include functions with a finite number of dis- 
continuities, provided we can define a left and a right derivative at each point in R. 

2.4. Some miscellaneous results 

Theorem 2.4.1. (Inversion formula). Let f E: T, and 2 be a finite hyperreal. Then 
(i) for infinite K ,  A, p,, v F;ZFL f(z) =f( - z ) ,  
(ii) if in addition Ff exists then FFf exists and FFf(z) =f(-2). 
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Proof. (i) 

(since we may interchange the order of integration for the proper Riemann integral) 

f ( - z )  = since f E T. 
(ii) Now for any finite K ,  h and infinite p, v 

FkFf(z )  -F",Lf(z) 

So by 1.2.2 3 M  infinite such that for any infinite K ,  h <M 

F;1Ff(z) =F;ZFf;f(z)  where p,  v are infinite 

-f(-z) by 6). 
But then 1.2.3 establishes that this holds for all infinite K ,  A ,  and the continuity off 
implies that FFf exists and so FFf(z) =f(-z) as required. 

Theorem 2.4.2. (Parseval's theorem). Let f, g E T. Then 
(i) for all positive infinite K ,  A, p, v 

(ii) if Ff and Fg exist then 

Proof. (i) Let A ,  K be infinite and let p, v be finite. Then 

j-1 dx (Ff;g 1 *(x )FLf(x ) 

since p, v are finite. By the infinitesimal prolongation theorem 1.2.2 this holds tlp, 
v <M, where M is an infinite constant. Thus we have for all infinite A ,  K ,  p, v < M  

h is a standard function. So 1.2.3 gives (i). 
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(ii) Now suppose Fg and Ff exist. Then for any finite K ,  A and infinite p, v 

dx 0% 1 * ( x  )Ffb ) = j dx (FLg ) * ( x  )FLf (x  1. 1: -A 

dx (Fg)*(x)Ff(x 1 = \ " dY g *(Y )f(Y 1. I-: CL 

So by 1.2.2 there exists an infiniteM such that this is true V K ,  A <M. But then 1.2.3 and 
(i) give, for infinite K ,  A, p, v > O  

Since the LHS is independent of p, v and the RHS is independant of K ,  A, neither side 
depends on the infinite constants and we have (ii). 

Remark. Parseval's Theorem is obtained by putting g = f. 

Theorem 2.3.3. (Shifting theorems). 
(i) ~ ~ f ( t )  eiu')(x) = ~ ~ f ( x  -a ) .  

(ii) (FL f ( t  - a) ) (x )  = e-'""(Ff;:",)(x). 

Proof. Elementary. 

Convolution. Let y ,  f be internal functions, *-integrable on any interval. Let K ,  A be 
positive hyperreals. Then we define the convolution 

If for any infinite K ,  Agi*f is microcontinuous, near standard and '(gf,*f(s)) is 
independant of K ,  A at S E R  we can define g*f(s)=O(g;*f(s)). The approximation 
theorem (Davis 1977) states that if g*f can be defined on R and g i  *f is microcontinuous 
on *R then g*f is continuous on R and Vs E *R 

g*f(s) -gi*f(s). 

Proposition 2.4.4. Let f, g be standard and such that g is continuous and ( f l  dx 
exists. Then we can define g*f. g*f is continuous on R and Vs E *R, and infinite K ,  A 
g*f(s) -g: *f(s). The proof is very similar to that of proposition 2.3.1 and is omitted. 

Theorem 2.4.5. (The convolution theorem.) If Ff and Fg exist and K ,  A are infinite 
then 

Ff(x)Fg(x) =F(g;*f)(x). 

Proof. Let K ,  A be finite. Then for finite x ,  infinite p, v 
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by the shifting theorem and since Fg exists 

=FI: (g;*fI(x). 

Thus by 1.2.2 there exists an infinite M such that V infinite K ,  A < M  

Ff (x )Fg ( x  1 = F t f ( x  )Fg (x  1 
=FE (gt*f)(x) for any infinite p, v > 0 

- F ( d  *f)(x) 
since the LHS is continuous and near standard for finite x and independent of p, v. Both 
sides are standard so we have equality. Curiously it is not necessary to be able to define 
g*f* 

3. Quantum mechanics 

3.1. Quantum field theory 

The object of the present paper is to develop mathematics for use in the construction of 
field theory from quantum mechanics. Here we outline the procedure as a means of 
motivating the present paper. 

The wavefunctions of one-particle states are square integrable functions. We 
replace the improper integral in the standard inner product by a proper integral on a 
fixed infinite segment of the hyperreal line including the reals. This inner product is 
identical up to an infinitesimal to the standard one. In other words we make an external 
modification to the standard quantum mechanical model. The new model will make the 
same predictions as the old one since the coordinate space wavefunctions and rules for 
time development are unchanged and we take the standard part of the inner product 
when calculating a probability. 

We embed the new model in a larger one including plane waves in the state space. 
Then, using non-standard analysis as described here we construct field theory on the 
larger model. It is to be noted that this construction would not be possible without 
making the external modification referred to in the preceding paragraph. 

We define non-interacting multiparticle state spaces as the direct product of single 
particle state spaces, and Fock space as the direct sum of spaces with different numbers 
of particles. Since we are working on a space including plane waves we can immediately 
define creation and annihilation operators. In the standard theory this can only be done 
hypothetically. We are then able to define field operators in terms of a proper 
non-standard integral of creation and annihilation operators. 

The theory develops along intuitively compelling lines. Relativity demands that no 
interaction may be propagated faster than the speed of light and that the operators 
describing interactions shall be covariant. This leads us, almost inevitably, to the 
construction of local field operators as building blocks for interaction operators. Unlike 
the standard theory, the field operators are not modified when interactions are 
introduced-indeed they could not be. 

To carry out the above construction it is necessary to take into account spin and any 
other internal discrete degrees of freedom, and include antiparticles in the description. 
To this end we postulate wavefunctions as generalisations of the Dirac and photon 
wavefunction. In the simplest cases the field operators are essentially similar to  the 
Dirac field and the Gupta-Bleuler form of the electromagnetic field, except that these 



Non-standard delta functions and Fourier transforms 2549 

now become well defined, non-standard entities. We are lead automatically to  a 
compelling form of QED which has electromagnetism as the classical correspondence 
and the interacting Dirac equation as the semiclassical correspondence. It also appears 
that we can generalise the theory to a model for hadrons which, if true, would solve the 
problem of quark confinement, give a single theory for all types of physical particle and 
should lead to a single theory of interactions (excepting perhaps gravity). 

The new theory leads to a modification of the Feynman graph rules which accounts 
for the divergences occurring therein and justifies regularisation according to a program 
similar to the one currently used. The divergences of certain Feynman diagrams result 
from a breakdown in the standard algorithm of the Dirac function. The new theory 
provides a reason for the divergences and justification for the procedure of subtracting 
off the infinite part. 

A systematic development of quantum field theory along these lines has already 
been achieved and will be reported in a subsequent paper. 

3.2. Calculation of a cross section 

In standard quantum mechanics we can calculate a cross section from S-matrix elements 
using wave packets. The calculation is extremely long and tortuous. It is also possible 
to 'fudge' a calculation from plane-wave states by using the (meaningless) relation 

s " x )  = 6 (x)6 (0) 

(see e.g. Bjorken and Drelll964, ch 7). In the non-standard theory essentially the same 
calculation goes through without fudging by using the following theorem. 

Theorem 3.2.1. Let K ,  A be positive infinite reals. Let 

l A  
d ( x )  = (1) [ dt e-kt 

7T -K 

Then d ' ( x ) / d  (0) s T S  (x) where the notation, =T and the test space, T are as defined 0 2 
above. 

Proof. Let f E T,  then it is required to prove that 

for p, v > O .  Now 
1 el, 
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If K -A is finite the second term isinfinitesimal because of the factor 1 / ( ~  + A ) .  (True 
for all sufficiently small infinite p, v, and so for all p, v.) If K -A is infinite the second 
term is infinitesimal by the Riemann-Lebesgue lemma. So 

as required. 

Appendix 

Proof of 1.2.1. Suppose for all 

y l E R + , y E * R  Y >Yi+f(Y)"O. 

Y >YZ+f(Y)<YZ..  . 

y z > t y 1  

s =(YzE*(O, 1)IY >yz+f(y)<yz) ,  

Then for all y 2  E *R such that y 2  = y l  E R+ we have 

because clearly 

and y >+y 1 E R+ *f(y) = 0 < y,. 
Let 

S is clearly internal. But (Al) + S  contains the set 

*(o, 1)\I 

where I is the set of infinitesimals, which is external. So S must contain an infinitesimal 
yo, which proves the theorem. 

Proof of 1.2.2. Let 

S ={ME *R+Im, S M ,  for each i = 1 , .  . . , n +mif(m)< 1) 

S is internal. But S contains the set of finite numbers, F, which is external. So S must 
contain an infinite M.  

Proof of 1.2.3. Given E >O,  E E R. Set 

S = { h  E*R+(hcmicM,eachi ,=$l f (m)-a l<E} 

S is internal. 

3h, ES n F .  But then 
(0, M]\F c S where F is the set of finite numbers. But (0, M]\F is external. So 

mi >Ohi + 1 iE(1 , .  . . .}+qf(m)-a\<& 
i.e. 

lim f (m  1, . . . , m,) = a. 
mi -00 
eachi 
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We have established that given E > 0, E E R there exists N E R such that we can write the 
sentence 

 mi E R)[((Vi ~ ( 1 , .  . . , n})(mi > N ) ) J / f ( m ) - a i  < E ] ,  

We use the transfer principle to conclude that V E  >0, E E R If(m) - a  
are infinite. So f ( m )  = a  whenever mi are infinite. 

< E whenever mi 
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